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Two examples of two-dimensional electrostatic particle-code simulations are shown in 
which one exhibits characteristics of a stable plasma while the other exhibits unstable, long 
wavelength plasma oscillations. The only difference between the two simulations is a change 
in the boundary condition on the electrostatic potential. An energy theorem is derived which 
shows that the rate of change of field and particle energy within a closed volume is related to 
a surface integral involving the electrostatic potential and the normal component of the 
electric current. An analytic theory is developed for a one-dimensional plasma to show how 
boundary effects can excite spurious plasma instabilities. The theory is tested with a series of 
one-dimensional plasma simulations. Finally, practical considerations on means of avoiding 
the non-physical instabilities in simulation plasmas are given. 

1. INTRODUCTION 

A tool of growing importance in understanding the kinetic processes within a 
plasma is computer particle simulation. In this computational algorithm, the paths of 
hundreds of thousands of particles are followed as they move in self-consistent and 
externally applied electromagnetic fields. The self-consistent fields are calculated at 
sample points on a grid using the particle positions and velocities. The forces from 
the fields are then interpolated at the particle positions to advance the particles to the 
next time-step, and the cycle is repeated to the end of the calculation. 

Since the very beginning of this method, the primary concern has been to 
reproduce the essential behavior of a real plasma while avoiding non-physical 
phenomena due solely to the limitations of the numerical method. An obvious 
requirement is that the simulation of a theoretically stable plasma should also be 
stable. This is not always easy to achieve. The requirement of stability has led 
investigators to a number of well-known design considerations, e.g.: the size of the 
time-step in relation to the highest natural frequency, the size of the Debye length as 
compared with the cell dimensions, and so on [ 11. 

Recently, another aspect of simulation design has been of some concern, namely, 
the handling of boundaries. A sizable majority of plasma simulations have used 
periodic boundaries. This is an appropriate choice for modelling an infinite, 
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homogeneous plasma. Periodicity also enables one to use fast Fourier transform 
(FFT) techniques, which are quite efficient to solve the equations for the fields, The 
FFT method also provides ready access to information about the time-development of 
Fourier modes, which helps to match linear plasma theory to plasma ~imula~iQ~. 
Particle trajectories in this case are necessarily periodic as well, and if one keeps the 
usual rules regarding time-steps and grid spacing, the periodic simulation is relatively 
trouble-free. EIowever, it is often necessary to model finite plasmas, or to include 
boundary effects. For example, a problem of interest in studies of the earth’s 
magnetosphere is to simulate the voltage drop along magnetic field lines due to 
current-driven shock formation in the region between the ionosphere and the 
magnetosphere [2]. The ionosphere is conveniently represented as a ~o~d~~ti~~ 
endplate, while the field lines in the magnetosphere are taken to be equi~ote~ti~ls. 
This means that in the solution of Poisson’s equation for the potential, 4, at one end 
of the domain 4 must satisfy the boundary condition #(z = 0) = 0, while at the other 
end @/azIzZL = 0 is imposed. The field lines are taken to be vertical (.z-nxis)l and 
periodic boundary conditions in the horizontal direction can be assumed. 

In two-dimensional problems where boundary conditions are imposed along two 
posing ends of a domain, fast Fourier transform (FPT) methods can be used in 
rizontal, X, direction where periodic boundary conditions can be imposed. Effici 

finite difference methods, which incorporate boundary conditions, can be used to 
ate solutions for the z-dependence of each Fourier mode. Recently, Decyk and 
on [3] have proposed a method that makes use of the FIST in two direct’ 
lso makes it possible to add solutions of Laplace’s equation to the d 

periodic solutions of Poisson’s equation to obtain solutions which satisfy pres~ibed 
boundary conditions in both directions. 

IIowever, boundary conditions imposed on a simulation plasma may have unin- 
tended effects on the plasma. For example, Decyk and wson 131 report 
considerable differences in the degree to which energy is co ved in a ~l~srna~ 
depending on whether zero potential conditions or vacuum bounds conditions are 
assumed, with the latter showing much poorer energy conservation. In a~~it~o~, 
problems can arise due to the way particles are handled at the bon~daries. In a 
situation in which a magnetic field is tangential to a boundary, Naitou et al. [4] have 
shown that some methods for reflecting particles at bo~nd~rie$ [S] result eit 
particle density gradients or boundary currents. When the magnetic field is 
oblique to the boundary, boundary currents have been shown to excite drift waves 
whose effects propagate into the interior of the plasma. 

In our attempts to model a bounded plasma we have observed the development of 
large-amplitude instabilities, with no apparent physical cause. The ~o~diti~~s of 
whether or not an instability will be’ excited and the growth rate appear to 
sensitive to boundary conditions on both the electrostatic potential and on the 
particles. To illustrate boundary effects, we show the results of two two-dimensional 
simulations of bounded plasmas, one giving the appearance of stability and the other 

exhibiting unstable behavior. Both plasmas consist of 32,768 ions and electrons, with 
an ion to electron mass ratio of 100. The electrons were assumed to be strongly 
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magnetized, constrained to follow magnetic field lines in the z-direction, while the 
ions were left completely unmagnetized. Both species have equal temperatures, and 
both drift at two-thirds the electron thermal speed in the -negative z-direction. The 
electron Debye length is two grid units, in a plane defined by 128 X 128 grid points. 
Only the electrostatic interaction was included. The Poisson equation was solved by 
Fourier transform methods in x and finite difference methods in z. Also in the 
calculations, the k, = 0 mode was suppressed. Both runs had periodic particle 
boundary conditions in x, that is, a particle that crossed a boundary was inserted in 
the opposite boundary. Particles that crossed boundaries normal to the magnetic field 
were also reinserted at the opposite ends, but the velocities were reinitialized. 

Figure 1 shows equipotential contours at 10 electron plasma periods into a run in 
which the potential was set to zero along the top and bottom boundaries of the 
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FIG. 1. Equipotential contours for a two-dimensional simulation of unmagnetized ions and strongly 

magnetized electrons. The magnetic field points toward the top of the figure. Periodic boundary 
conditions are assumed along the right- and left-hand boundaries, while the zero potential condition is 
imposed along the top and bottom boundaries. The position of the potential maximum and minimum is 
denoted by X and N, respectively. Distances are in grid units, and rpe is an electron plasma period. 
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domain. Since the electron and ion drifts were the same, no free energy was available 
for the excitation of instabilities. The electric field energy was about 2 % of the 
thermal energy of each species of particle, and the plasma showed no indication of 
instability. 

Figure 2 shows equipotential contours of a run which is identical to that shown in 
Fig. 1, except that along the top boundary the conditions a#/az = 0 as imposed. 
Figure 2a corresponds to the same time as Fig. 1. The large-scale structure in Fig. 2a 
in comparison to Fig. 1 is apparent, and the maximum potential differences generated 
are a factor of 3 larger than those in Fig. 1. Figure 2b shows a high degree of 
organization, dominated by large-scale structure, where the maximum potential 
differences are a factor of 12 greater than the potential differences in Fig. 1; and the 
electrostatic energy is 25 % of the total thermal energy. Examination of the time 
series for the potential at a given point revealed an oscillation at a frequency of 
w = u+,,/&?. The phase velocity of the wave was much larger than all particle 
speeds, and thus we identified the mode as the cold plasma oscillation 

w2 = co2 cos2 cf + co2. Pe PI’ (1) 

The above relation holds for strongly magnetized electrons and unmagnetized ions; (x 
is the angle between the magnetic field and the wave normal. The field energy grew at 
an approximately exponential rate between 12.5 and 25 rpe , with an e-folding rate of 
0.19 rpe’. 

Clearly, in both examples the particles contain no free energy. The fact that one 
run exhibited no unstable behavior, while the other run, shown in Fig. 2, did exhibit 
unstable behavior, indicates that the growth of instability must be attributed to the 
change in boundary conditions on the potential. 

The purpose of this paper is to present a systematic analysis of the effects of 
boundary conditions on plasma behavior. The next section will present a conservation 
theorem which will form the basis of the analysis. The following section will present a 
one-dimensional theory of boundary-induced plasma instabilities, and Section 4 will 
describe some one-dimensional computer experiments which illustrate the theory. The 
final section will give some practical advice for avoiding the non-physical effects of 
boundary-induced instabilities. i 

2. ANALYSIS OF BOUNDARY-INDUCED INSTABILITIES 

In this section, we shall derive a relation between the rate of change of field and of 
particle energy within a plasma in terms of energy fluxes across the boundaries 
surrounding the plasma. This will be done by differentiating with respect to time an 
expression for the sum of field and particle energies. The Vlasov and field equations 
will be used to convert the energy expressions into surface integrals. 
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En a simulation, the plasma is represented by a ditribut~on function of the type 

f(x, “, t) = i qx - x/((t)) a(” - “k(O)> 
k=l 

where S is a particle shaping function, and the sum runs over aii of the p~t~cies in 
the system. Actually, the details of the distribution function are not important for the 
arguments to be presented. This particular form was exhibited because it is a good 
representation of the type of distribution used in particle simulations. In what fol~ows~ 
we shall include magnetic as well as electrostatic energy, but the misplacement current 
term in the equations describing the electromagnetic field will be neglected. 

The total field and particle energy contained within a volume is given by 

(3) 

where the sum over j represents the sum over particle species. The time rate of change 
of W is given by 

T=?d’r [x j+nu2$~d2v+ 
.: ” 

jC+f-$-+ 

where f satisfies the Vlasov equation 

The expression for i?f/lat is substituted into (4) to calculate the rate of change of 
particle kinetic energy. First, we observe that 

The term involving the spatial derivative on f may be converted into a surface 
integral 

where the integral over ds is over the surface enclosing the volume, V, and F, is the 
kinetic energy flux transported by the particles of species j, 
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The remaining term, and the one of most interest here, is that involving the electric 
field. We observe that 

where j is the electric current given by 

At this point, it will be convenient to write E in terms of its irrotational and 
solenoidal parts, 

We can write, making use of Ampere’s law 

The surface integral term is the Poynting flux through the surface, while E, = 
-(l/c) aA/at refers to the solenoidal part of the electric field. Finally, 

- j”d3~V(.j=-~F”J.ds-~jy~.VPd3r) 03) 

where use has been made of the equation for charge conservation, and of Poisson’s 
equation. Incorporating these results into (9), our expression for the rate of change of 
plasma and field energy is now given by 

T=-$F*ds-$pij.ds--$-6e,XB .ds. 

Now, returning to the simulation examples displayed in Figs. 1 and 2, E, = 0 and 
so the apparent culprit that led to the instability is the surface integral involving q4j. In 
the simulation leading to Fig. 1, 4 was set to zero at two ends of the domain, and 
periodic boundary conditions were imposed along the other two sides so the surface 
integral was zero. In the example depicted in Fig. 2, 4 at the top end was left to float, 
so #j . ds was non-zero at that end. 

We note that as in the example described by Naitou et al. [4], a boundary-induced 
instability affected the interior of the domain. However, the example shown in Figs. 1 
and 2 was a result of currents normal rather than tangential to this boundary. 
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Another difference is that in the Naitou et al. [4] example the instability was 
generated interior to, but near, the boundary, by boundary currents; whereas the 
example shown here was identified with a surface integral term. 

3. THEORY OF THE BOUNDARY-INDUCED ~~sTA~~L~TY 

This section will develop a theoretical framework for a one-dimensional bon~dc 
plasma to gain insight on the process for excitation of the instability. As a model, we 
shall consider linear plasma oscillations in a bounded electron plasma in which the 
ions are assumed to form a uniform neutralizing background. The boundary 

therefore 

and 

conditions 4(O) = 0 and #‘(I,) = 0 will be imposed. 
We therefore seek linearized solutions to the equations 

af T e 34 a! 
~+“~+--&~=Q, 

and 

a’# 2 = -47re(n, - n,), 

The hnearized Vlasov equation takes from 

which has the solution 

(rq 

The function g(t - z/v) will make it possible to impose boundary conditions on the 
particle distribution function. We then assume the potential can be expanded on terms 
of the complete set of basis functions 
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that satisfies the prescribed boundary conditions: 

G9) 

When this is substituted into (19) and the indicated integration carried out 

f, = w. go(v) ,-iwU-z/u) + wL gL(v) e-i4t-(z-01u) 

e %O -iwf 4&?l 
(21) 

---e 

m 821 7 (co” - k;v’) 
[iw cos k,z + k,v sin k,z], 

where k, = (n + l/2) n/L. The velocity distribution functions go and g, are the 
distribution functions of particles injected at z = 0 and L, respectively. The procedure 
for obtaining a dispersion relation is to integrate f, over velocities to obtain the 
perturbation number density II, - no of (17b). This, along with the expansion in (2) is 
substituted into the Poisson equation (16). The resulting expression is then multiplied 
by sin k,z and integrated over the domain. The result is an infinite matrix equation 
in which the matrix elements are transcendental functions of the eigenvalue, (o. 
Although the procedure described above is reasonably straightforward, the task of 
finding eigenvalues to demonstrate instabilities is not. 

Instead, we shall be content with a much more limited objective, namely, to show 
that, given either undamped or growing waves, the boundary term #j in (15) has a 
negative time average, signifying sustained electrical energy input into the plasma. To 
do this, we simply calculate 

j=en, f,vdv 
I (22) 

and multiply by the expression in (20). For definiteness, we assume f. in (21) to be 
of the form 

(23) 

and g, to be of the form 

go = nfo v>o 
=o v<o 

and similarly for g, except that it is non-zero only for negative velocities, where n is a 
normalizing constant. The actual forms of go and g, are unimportant, because it can 
be shown that 

J,(Z) = fm vg,(v) eiwz” dv (24) 
‘0 
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decreases as an exponential function of zw/Au, where Aa, is the thermai spread in g, 1 
The distribution g, is assumed normalized such that S,(O) = 1, and it is assumed that 
&w/dv 9 1 so that Jo(L) is exponentially small. Since we are interested in eval 
the current only at z = 0 and L, it is not necessary to evaluate J,, for all points in the 
interior of the domain. Similarly, we can omit the requirement to explicitly evaluate 
JI,(z), where J,(L) = 1, the boundary flux term at z = L. The resulting expression for 
the current density is therefore 

j = etyoJo(z) e-l“” -I- ey/,J,(z) e-‘“’ 

x {i[Z’f$,‘) + Z’Q,)] cos k,z f [Z’@:,i) - Z’@p,)] sin knz], (25) 

where /I,” = (cu i k,v,)(m/2d)1’2/k,, and Z’ is the derivative of the 
function. 

At this point, we impose boundary conditions on the electron current. A common 
particle boundary condition is that particles which leave one end the domain are rein- 
serted at the opposite end. This requires that 

iyo=--!$ewTk [Z’(jl;)-Z’@,‘)](-1)” 

and 

Although these expressions may be positive or negative, it should be rernem~e~e~ that 
they are first order quantities, which must be added to the steady zero order 
boundary fluxes to obtain the total flux. However, the steady zero order fiux does not 
contribute to the long term average energy balance because this steady part of the 
flux, when multiplied by the oscillating 4 averages to zero. 

Finally, upon substituting (26) into (25) and multiplying it by the expression (20) 
for QI(z, t) and evaluating at z = L and remembering that J,,(L) 2 0, the electric 
energy flux at z = L is obtained 

There is no energy flux at z = 0 because (s(z = 0) = 0. 
Hn the runs depicted in Figs. 1 and 2 and the ore-Dimensions runs to be ~$s~~~~~~d 

below, the phase velocity of the wave far exceeds any particle velocities, so it is 
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appropriate to use the asymptotic expansion of the plasma dispersion functions for 
Im(P) > 0, Z’(&) N_ Pi’, then 

In the limit of zero drift, the second term in the curly bracket in (33) vanishes. The 
remaining term is a consequence of the particles that exit from the domain at z = 0 
and are reinserted at z = L. 

Making the assumption that the z-dependence of the eigenmode is dominated by 
the sin k,,z function (28) is approximated by 

(29) 

Since the wave energy is proportional to the square of the electric field, (k,#,), it can 
be seen that the energy input term is largest for the lowest values of k,. We further 
see that the real part of -j(L) 4(L) will be positive for Im(o) > 0 only if IZ is even. 
Thus we would expect the mode corresponding to n = 0 mode to be the fastest 
growing, and likely the dominant mode. Further, since the real part of -$(L)j(L) is 
largest for cc) pure imaginary, we would expect purely growing modes. It is therefore 
likely that in this model, drift of the electrons would have little substantial effect on 
the character of the instability. For real frequencies the contribution of the second 
term will be positive only if no is positive. Therefore, for positive u,,, the modes 
corresponding to y1 odd might also be excited. 

4. ONE-DIMENSIONAL NUMERICAL EXAMPLES 

In order to more systematically investigate the effect of particle and potential 
boundary conditions, a one-dimensional plasma model containing 8 192 electrons in a 
domain specified by 128 grid points is used. The ions are assumed to form a uniform 
neutralizing background. For each of the runs to be described, there are 32 time-steps 
per plasma period, and there are two grid points per Debye length. Table I lists the 
runs, according to the particle and field boundary conditions, and the drift velocities. 
Also listed is whether the simulation can be shown to be stable according to the 
criterion that 

z = @(O)j(O) - $qL) j(L) = 0. (30) 

Parameters which indicate whether the plasma showed signs of instability, namely, 
the maximum values of the ratio of the field to particle kinetic energy and potential 
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TABLE I 

Characteristics of One-Dimensional Simulation Runs 

Run # P.B.C. 

1 Periodic 
2 Reflecting 

3 Periodic 

4 Periodic 

5 Reflecting 

6 Periodic 

7 Periodic 

8 Periodic 

4 B.C. 

Periodic 

O(O) = 0 
f(L) = 0 

b(O) = Q 
d’(L)=0 

$(O) = 0 
4(L) = 0 

O(O) = 0 
WI = 0 

m(o) = 0 
f(L)=0 

C(O) = 0 
qY(L)=O 

(5(O) = 0 
gi(L) = 0 

VD 

0 

0 

0 

0 

0 

STABLE? Max( Wl?/K,) max(A#} 

Yes 3.003 0.6 
Yes 0.004 1.1 

NO 0.035 10.8 

Yes 0.003 0.85 

Yes 0.003 0.7 

No 0.014 7.0 

NO 0.010 6.8 

Yes 0.002 0.7 

Note. P.B.C., 4 B.C., VD stand for particle boundary conditions, potential boundary conditions, and 
drift velocity. The max stands for maximum value achieved during run of 16 plasma periods. J%‘E/KJ? is 
the ratio of field to particle kinetic energy, and A# is the maximum potential difference across domain. 

difference across the domain during the run, are also listed. Periodic boundary 
conditions on the particles means that particles which ieave one end of the domain 
are reinserted at the other end with their velocities unchanged. Reflecting boun 
conditions means that particles are reinserted at the same end they leave, but w 
change in the sign of the particle velocity. This condition sets the boundary current to 
zero. Reflecting boundary conditions are not used when the plasma bas a 
because that would set up interpenetrating beams which are unstable, even if (3 
satisfied. The plasma drift, when non-zero, is at the thermal speed. 

Run #l is stable by virtue of the periodic boundary conditions on both field and 
particles so that j(0) 4(O) =j(L) I(L). This combination is the most common type 
imposed on particle simulations because it is used to represent large, statistically 
homogeneous systems. All the other stable examples are i~enti~ed as such because 
either ~$4 is zero on each boundary either because 4 was clamped, or because 
reflecting boundary conditions on the particles are used. 

It can be seen from a glance at Table I that those runs predicted to be stable by the 
criterion of (30) have a much lower ratio of electric field to kinetic energy and a 
much smaller potential across the domain. Those runs in which there is a drift the 
drift energy is the same as the thermal energy, and the ratio of electric fiel 
particle energy tends to be a factor of 2 lower than comparable examples with no 
drift. The time series of the potential at selected locations sbows an almost sinusoidal 
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variation in all of the stable runs. Figure 3a shows a time series of the potential at a 
given point in the domain for Run #l, which is typical of all stable runs. For 
comparison purposes, Fig. 3b shows the electric field energy as a function of time. 
This shows an irregular low-level variation, which is also typical of the stable runs. 
Figure 3~ shows a plot of the potential at the last time-step in the run. This is also 
typical of the stable runs. 

Figure 4 shows data corresponding to those shown in Figure 3, except it is for Run 
#3 which is indicated to be not stable. Again, this is typical for all of the runs which 
are indicated in Table I as not being stable. Figure 4a shows a time series of the 
potential which exhibits a highly irregular variation. Note the much different scale 
than in Fig. 3a. Figure 4b shows the electrostatic energy which indicates large 
irregular variations. Analysis of the particle energy data indicates a 33 % variation in 
particle energy during the run. The instability apparently grew and saturated within 
an electron plasma period. This very rapid growth is consistent with the results of the 
analysis of the previous section which indicates a positive imaginary frequency, i.e., 
exponential growth corresponding to n even modes. Figure 4c shows the potential as 
a function of z. This shows the strong dominance of te n = 0 ,member of the set of 
basis functions sin{(n + l/2) nz/L}. This is an extreme example, but typical of most 
of the profiles in all of the unstable runs, and is also consistent with the analytical 
results of the previous section. 

The potential profiles of Runs #3, 6, and 7 were decomposed into the basis 
functions for purposes of comparison with the theory of the previous section. It was 
found that the basis function coefficient corresponding to n = 0 was usually a factor 
of 5 to 10 larger than the II = 1 coefftcient, which was in turn about twice as large as 
the n = 2 coefficient. The higher order coefficients decreased monotonically. 
However, it was found that for Runs #3 and 7 that the II = 0 and n = 1 coefficients 
had nearly the same time series, within a constant multiplication factor, but that the 
n = 2 time series was not well correlated. This suggests that the n = 1 coefficient is 
part of the IZ = 0 eigenmode, but that a separate eigenmode corresponding to IZ = 2 
may be excited independently. However, in Run #6, in which there was streaming in 
the positive direction, the time series for the first three coefficients is poorly 
correlated suggesting that modes corresponding to II = 0, 1, 2 are all independently 
excited. These results are all consistent with the analyses of the previous section 
which indicated that modes corresponding to only even n would be excited if the drift 
velocity were zero or negative and that excitation would occur for all modes for 
positive drift velocities. It is perhaps of interest to note that in Run #6 there was an 
increase in total energy during the first three plasma periods followed by a decrease 
to an energy considerably below the initial energy. Run #7 exhibited an increase in 
total energy by about 80%. 

It should be kept in mind that we are making the approximation that the actual 
eigemodes are well represented by the basis functions. An even more questionable 
assumption is that the analysis is valid for only small-amplitude, linear, oscillations, 
but comparisons are being made to large-amplitude disturbances, where nonlinear 
effects are undoubtedly important. Hence the only claim that can be made for the 
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FIG. 3. Data from Run #I of a one-dimensional simulation listed in Table 1. Potentiai is in ~lniks of 
electron thermal energy. (a) A time series of the potential at a single point. (b) A time series of the elec- 
trostatic energy. (c) A profile of the potential at the end of the run. 
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comparisons between the analysis and numerical results is that the consistency lends 
support to the central thesis of this paper that suprious instabilites in simulation 
plasmas can be generated by boundary effects. 
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FIG. 4. Same as Fig. 3 except for Run #3 listed in Table I. 
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5. DISCUSSION AND CONWJSION 

This article has attempted to point out that spurious, non-physical instabilities may 
be generated in simulation plasmas if boundary conditions on the eiectric potential 
and particles are not handled properly. The analysis of Section 3 shows that the 
instability arises from the fact that particle fluxes across the boundaries of the 
simulation domain become correlated with electric potential variations in the 
simulation domain so that the term j# may have a non-zero time average and 
contribute to a long-term buildup of wave energy in the piasma. The correlation, ofj 
and 4, if neither are deliberately clamped, arises because it is easier to write a code 
which maintains a constant number of particles in the simulation domain. Electric 
fields within a plasma will accelerate particles and alter the number of ~~ti~i~s 
leaving the domain. If the particles that leave the domain are reinserted at the boun- 
daries, then the particle flux, and hence the electric current will be correlated with the 
potential. This correlation is non-physical, so any instabilities arising from it are non- 
physical. 

The most important practical results are contained in the middle term on its right- 
band side of (15). Unless one can guarantee that the surface integral ~a~is~~~~ an 
electrostatic code will likely be non-energy-conserving. If a non-energy-~o~servi~~ 
simulation is desired, then special care must be taken to ensure that particle fluxes 
across the boundaries remain uncorrelated with potential variations to prevent the 
development of non-physical instabilities. In a magnetic code, where 4 = 0, energy 
conservation does not seem to require special handling of the particles because the 
Poynting flux term in (15) does not involve particle fluxes across the boundary. 
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